Journal of Manufacturing and Materials Processing 2023
01/2023
10.3390/jmmp7010017
Beñat Bravo, Fundición de hierro, I+D+i, Javier Nieves, Tecnologías de fundición, Tecnologías inteligentes de fabricación
Metallographic analyses of nodular iron casting methods are based on visual comparisons according to measuring standards. Specifically, the microstructure is analyzed in a subjective manner by comparing the extracted image from the microscope to pre-defined image templates. The achieved classifications can be confused, due to the fact that the features extracted by a human being could be interpreted differently depending on many variables, such as the conditions of the observer. In particular, this kind of problem represents an uncertainty when classifying metallic properties, which can influence the integrity of castings that play critical roles in safety devices or structures. Although there are existing solutions working with extracted images and applying some computer vision techniques to manage the measurements of the microstructure, those results are not too accurate. In fact, they are not able to characterize all specific features of the image and, they cannot be adapted to several characterization methods depending on the specific regulation or customer. Hence, in order to solve this problem, we propose a framework to improve and automatize the evaluations by combining classical machine vision techniques for feature extraction and deep learning technologies, to objectively make classifications. To adapt to the real analysis environments, all included inputs in our models were gathered directly from the historical repository of metallurgy from the Azterlan Research Centre (labeled using expert knowledge from engineers). The proposed approach concludes that these techniques (a classification under a pipeline of deep neural networks and the quality classification using an ANN classifier) are viable to carry out the extraction and classification of metallographic features with great accuracy and time, and it is possible to deploy software with the models to work on real-time situations. Moreover, this method provides a direct way to classify the metallurgical quality of the molten metal, allowing us to determine the possible behaviors of the final produced parts.
Xabier Sarrionandia (University of Deusto), Javier Nieves (AZTERLAN), Beñat Bravo (AZTERLAN), Iker Pastor-López (University of Deusto), Pablo G. Bringas (University of Deusto)
visión artificial; aprendizaje automático; aprendizaje profundo; metalografía; clasificación
¿Cómo podemos ayudarte?.
Mantente informad@ de la actividad de AZTERLAN.
Mantente informad@ de la actividad de AZTERLAN.
Formamos equipos de trabajo en distintos ámbitos de la metalurgia y los procesos de transformación de metales.
Indícanos los datos de tu trabajo y nos pondremos en contacto contigo lo antes posible.
Comparte tu reto con nuestro equipo. Hablar no puede más que acercarnos un poco más a posibles soluciones.