2nd Foudry Young Reseachers and Early Professional Careers Conference
2024/04
Andrés Pérez, B+G+i, Burdin-galdaketa, David García, Galda teknologiak, Javier Nieves, Jorge Angulo, Tecnologías inteligentes de fabricación
4.0 industriaren etorrerak galdaketa planten digitalizazioa nabarmen handitzea ekarri du, ekipoek eskaintzen dituzten datuak biltzeko gaitasunen hobekuntzak bultzatuta. Datu horiek erabilgarriak dira galdaketa-prozesua hobetzeko. Galdaketa prozesua egokia izateko hainbat faktore izan behar dira kontuan, hala nola metalaren konposizioa, moldearen diseinua eta azken emaitzarengan eragina izan dezaketen hainbat galdaketa-baldintza.
Gainera, galdaketa-prozesuek askotariko teknikak hartzen dituzte: hareazko moldekatzea, argizari galduzko galdaketa, presiozko galdaketa eta galdaketa zentrifugoa, besteak beste. Horien artean, argizari galdatuzko galdaketa, investment casting ere esaten zaiona bere ingelesezko izenagatik, pieza konplexu eta zehatzak ekoizteko gaitasuna duelako nabarmentzen da. Teknika hau asko erabiltzen da industria aeroespazialerako, automobilgintzako zein medikuntzarako osagaiak ekoizteko, tolerantzia zorrotzak behar diren kasuetan. Hala ere, prozesu motela eta garestia izan daiteke, eta piezen egoera ez da ezagutzen prozesua amaitu arte. Beraz, osagaietan akatsen bat izanez gero, lehengaia galtzeaz gain, denbora asko galduko litzateke.
Testuinguru horretan, ikerketa lan honen lantaldeak ikuspegi berri bat proposatzen du adimen artifiziala (AA) erabiliz, non prozesuaren parametrizazio optimoa ezartzen duen akatsen agerpena gutxitzeko. AAren lan-fluxua sei modulu nagusitan antolatuta dago: I. Datuen bilketa; II. Datuen aurreprozesamendua; III. Modeloa hautatzea; IV. Produkzio-datuen multzoak sortzea; V. Modeloaren iragarpena; VI. Parametrizazioa hautatzea.
Lehenik eta behin, datuak biltzeko, galdaketa-prozesuko ekipoen eta makinen parametroak bildu behar dira, eta galdaketan akatsak agertzearekin lotu.
Bigarrenik, datuen aurreprozesamenduak berekin dakar produkzio-prozesuaren faseei dagozkien datuak bereiztea eta sarrera normalizatzea. Etapa honetan, ezagutza aditua aplikatuz, lortutako aldagaiek gorabeherak izan ditzaketen mailak zehaztu dira.
Hirugarrenik, eredua hautatzeko prozesuan, 24 sailkatzaile mota ohikoenak ebaluatzen dira, hala nola Naïve Bayes, Random Forest eta KNN, eta baliozkotze gurutzatua (10-fold cross-validation) erabili dira % 70eko zehaztasuna gainditzen duen eredua zehazteko, emaitza esanguratsuen kopuru handienarekin. Ikuspegi honen helburua 2. motako erroreak minimizatzea da, hau da, klase positiboak (akatsak galdaketan) oker sailkatzen direnean negatibo gisa (akatsik gabe galdaketan) identifikatuta.
Gero, produkzio-datuen multzoa eraikitzen da, aldagai normalizatuen balizko tarteetatik abiatuta. Datu-multzo horrek prozesuaren agertoki posible guztiak biltzen ditu, eta konbinazio hori lortzeko, Cartesiar produktua aplikatzen zaio atributu multzo bakoitzari. Produkzio-datuen multzoaren luzera atributuen kantitatearen eta atributu horiek dituzten elementuen kantitatearen araberakoa izango da.
Ondoren, ereduaren iragarpena egiten da, hau da, klase bitar objektiboaren fidagarritasun-maila zehazten da, kasu honetan akatsik dagoen ala ez, ondoren balio handienekoa lortzeko.
Azkenik, baina ez garrantzi gutxiagokoa, parametrizazio-aukeraketa lortzen da, klase objektiboa akatsik gabe iragaziz eta fidagarritasun-maila handienaren arabera ordenatuz. Horrela, akats gutxien dauden tarteak lortzen dira.
Oro har, ekoizpen-prozesuaren fase guztietako modelo guztiek % 70etik gorako zehaztasuna lortu zuten, eta, beraz, gizakiek baino errendimendu hobea izan zuten. Ondorio gisa, proposatutako adimen artifizialeko lan-fluxu hau argizari galduko galdaketan inplementatuta, galdaketaren errendimendua eta produktibitatea hobetzeko gaitasuna frogatu da.
Andrés Pérez, Javier Nieves, Jorge Angulo.
Adimen artifiziala, argizari galduko galdaketa, investment casting, fabrikazio prozesuen optimizazioa, 4.0 galdaketa, Modelan proiektua.
Nola lagun diezazukegu?
Manten zaitez AZTERLANeko informazioez eguneratuta
Mantendu AZTERLANeko berrien adi
Metalurgiaren eta metalen eraldatze prozesuen alor desberdinetan lantaldeak sortzen ditugu
Emaizkiguzu zure lanaren datuak eta zurekin kontaktuan jarriko gara ahalik eta bizkorren.
Partekatu zure erronka gure lantaldearekin. Hitz egiteak irtenbide posibleetara hurbildu baino ezin gaitzake egin.