• Berriak
  • Talentua
  • Webmail
  • Generic selectors
    Exact matches only
    Search in title
    Search in content
    Post Type Selectors

An Objective Metallographic Analysis Approach Based on Advanced Image Processing Techniques

Metallographic analyses of nodular iron casting methods are based on visual comparisons according to measuring standards. Specifically, the microstructure is analyzed in a subjective manner by comparing the extracted image from the microscope to pre-defined image templates. The achieved classifications can be confused, due to the fact that the features extracted by a human being could be interpreted differently depending on many variables, such as the conditions of the observer. In particular, this kind of problem represents an uncertainty when classifying metallic properties, which can influence the integrity of castings that play critical roles in safety devices or structures. Although there are existing solutions working with extracted images and applying some computer vision techniques to manage the measurements of the microstructure, those results are not too accurate. In fact, they are not able to characterize all specific features of the image and, they cannot be adapted to several characterization methods depending on the specific regulation or customer. Hence, in order to solve this problem, we propose a framework to improve and automatize the evaluations by combining classical machine vision techniques for feature extraction and deep learning technologies, to objectively make classifications. To adapt to the real analysis environments, all included inputs in our models were gathered directly from the historical repository of metallurgy from the Azterlan Research Centre (labeled using expert knowledge from engineers). The proposed approach concludes that these techniques (a classification under a pipeline of deep neural networks and the quality classification using an ANN classifier) are viable to carry out the extraction and classification of metallographic features with great accuracy and time, and it is possible to deploy software with the models to work on real-time situations. Moreover, this method provides a direct way to classify the metallurgical quality of the molten metal, allowing us to determine the possible behaviors of the final produced parts.

Autoreak:

Xabier Sarrionandia (University of Deusto), Javier Nieves, Beñat Bravo, Iker Pastor-López (University of Deusto), Pablo G. Bringas (University of Deusto)

Keyword-ak:

ikuspen artifiziala; ikaskuntza automatikoa; ikaskuntza sakona; metalografia; sailkapena

Atzera

Nola lagun diezazukegu?

Manten zaitez AZTERLANeko informazioez eguneratuta

Jarri kontaktuan Andoni-rekin

Contacta con Ramón

Jarri kontaktuan Xabierrekin

Jarri kontaktuan Maider Muro-rekin.

Jarri kontaktuan Dr. Urko de la Torre-rekin.

Contacta con Dra. Anna Regordosa

Jarri kontaktuan Aitor Loizaga-ekin.

Jarri kontaktuan Dr. Rodolfo González-Martínez-ekin.

Jarri kontaktuan Anderrekin.

Jarri kontaktuan David Aristondo-rekin.

Jarri kontaktuan Juan J. Bravo-rekin.

Jarri kontaktuan David Garcia-rekin.

Jarri kontaktuan Jose Ramon-rekin.

Jarri kontaktuan Oihana-rekin.

Mantendu AZTERLANeko berrien adi

Jarri kontaktuan David-ekin.

Jarri kontaktuan Ibonekin.

Jarri kontaktuan Hegoirekin.

Jarri kontaktuan Itziarrekin.

Jarri kontaktuan Erikarekin.

Jarri kontaktuan Beñatekin.

Jarri kontaktuan John-ekin

Jarri kontaktuan José Javier-ekin.

Jarri kontaktuan Andrearekin.

Jarri kontaktuan Janirerekin.

Jarri kontaktuan Clararekin.

Jarri kontaktuan Nagorerekin

Jarri kontaktuan Gorkarekin.

Jarri kontaktuan Emilirekin.

Jarri kontaktuan Jonekin.

Metalurgiaren eta metalen eraldatze prozesuen alor desberdinetan lantaldeak sortzen ditugu

Ezagutza alora
Emaiguzu informazio gehiago zure lantaldearen ezagutza beharrei buruz zure helburuetara egokitutako proposamen bat egin ahal izateko.
KONTAKTURAKO DATUAK

Emaizkiguzu zure lanaren datuak eta zurekin kontaktuan jarriko gara ahalik eta bizkorren.

Zein da zure erronka?

Partekatu zure erronka gure lantaldearekin. Hitz egiteak irtenbide posibleetara hurbildu baino ezin gaitzake egin.