• Berriak
  • Talentua
  • Webmail
  • Generic selectors
    Exact matches only
    Search in title
    Search in content
    Post Type Selectors

Iron castings Advanced prediction tools, foundry process control and knowledge management

It is well known that the large number of variables that interact during the foundry process bring about many drawbacks. These difficulties are even bigger when we try to predict the behavior of the process since it is extremely complicated to establish correspondence relationships among the most critical variables on the basis of relating data.

The simulation tools, the control devices and the process management systems used, are very useful but they do not take into account the relationships existing among them.

This research takes into consideration certain IT generic tools that, once adapted to the foundry process and implemented on the basis of specific knowledge, are capable of processing and interrelating a huge amount of data in such a way that they can predict the final quality of the castings, maintaining at the same time the process under controlled conditions.

These tools manage the information coming directly from the foundry plant, what allows to strenghten the process and make a continuous progress by a constant information feedback, helping to improve the own rejection rate levels, even shown in ppm, … etc. The fact of developing tools capable of managing all these concepts has been considered a utopia in the foundry process for a long time.

The analytical process used is based on the selection of concrete incidences, on parametres and defects, The system assigns them the potential causes considered more probable by the calssic knowledge and later on, they are selected and given priority according to objective criteria.

The conclusions reaches are based on applications and verifications carried out on different foundries. They have allowed us not only to validate the correct functioning of the system but also to verify its efficiency according to the success rate. It is possible to “master the process”, reduce the variability rate, minimize incidences, and manage efficiency the own knowledge by using the data existing in each foundry and integrating the different prediction and control tools. 

Autoreak:

Argoitz Zabala, Ramón Suarez, Julián Izaga

Keyword-ak:

burdin-galdaketak, kalitate metalurgikoa, ezagutzaren kudeaketa, analisi bayestarra, adimen artifiziala

Atzera

Nola lagun diezazukegu?

Manten zaitez AZTERLANeko informazioez eguneratuta

Jarri kontaktuan Andoni-rekin

Contacta con Ramón

Jarri kontaktuan Xabierrekin

Jarri kontaktuan Maider Muro-rekin.

Jarri kontaktuan Dr. Urko de la Torre-rekin.

Contacta con Dra. Anna Regordosa

Jarri kontaktuan Aitor Loizaga-ekin.

Jarri kontaktuan Dr. Rodolfo González-Martínez-ekin.

Jarri kontaktuan Anderrekin.

Jarri kontaktuan David Aristondo-rekin.

Jarri kontaktuan Juan J. Bravo-rekin.

Jarri kontaktuan David Garcia-rekin.

Jarri kontaktuan Jose Ramon-rekin.

Jarri kontaktuan Oihana-rekin.

Mantendu AZTERLANeko berrien adi

Jarri kontaktuan David-ekin.

Jarri kontaktuan Ibonekin.

Jarri kontaktuan Hegoirekin.

Jarri kontaktuan Itziarrekin.

Jarri kontaktuan Erikarekin.

Jarri kontaktuan Beñatekin.

Jarri kontaktuan John-ekin

Jarri kontaktuan José Javier-ekin.

Jarri kontaktuan Andrearekin.

Jarri kontaktuan Janirerekin.

Jarri kontaktuan Clararekin.

Jarri kontaktuan Nagorerekin

Jarri kontaktuan Gorkarekin.

Jarri kontaktuan Emilirekin.

Jarri kontaktuan Jonekin.

Metalurgiaren eta metalen eraldatze prozesuen alor desberdinetan lantaldeak sortzen ditugu

Ezagutza alora
Emaiguzu informazio gehiago zure lantaldearen ezagutza beharrei buruz zure helburuetara egokitutako proposamen bat egin ahal izateko.
KONTAKTURAKO DATUAK

Emaizkiguzu zure lanaren datuak eta zurekin kontaktuan jarriko gara ahalik eta bizkorren.

Zein da zure erronka?

Partekatu zure erronka gure lantaldearekin. Hitz egiteak irtenbide posibleetara hurbildu baino ezin gaitzake egin.