Materials Science Forum
06/2018
10.4028/www.scientific.net/MSF.925.36
Doru Stefanescu, Foundry technologies, Gorka Alonso, Iron foundry, R&D+i, Ramón Suarez, Foundry Technologies
The problem of graphite crystallization and growth in cast iron has recently received increased attention. As most of the published literature describe analysis of room temperature graphite, there is a legitimate concern that the crystallization of graphite is concealed by recrystallization and growth in solid state occurring after solidification. To avoid confusion in the interpretation of room temperature graphite morphology, the authors used Field Emission Gun SEM on deep-etched interrupted solidification (quenched) specimens to reveal the morphology of graphite at the very beginning of solidification, when the graphite is in contact with the liquid. Information from related phenomena, such as crystallization of hexagonal structure snowflakes and metamorphic graphite, as well as of diamond cubic structure silicon crystals in aluminum alloys is incorporated in the analysis. Research discussing graphite produced through gas-solid and solid-solid transformations is also examined. Because the faceted growth of graphite is the result of diffusion-limited crystal growth in the presence of anisotropic surface energy and anisotropic attachment kinetics, a variety of solidification morphologies are found. The basic building blocks of the graphite aggregates are hexagonal faceted graphite platelets generated through the growth of graphene layers. As solidification advances, the platelets thicken through layer growth, and then aggregate through mechanisms that may include foliated/tiled-roof crystals and dendrites, curved-circumferential, cone-helix, helical, and columnar or conical sectors growth.
Doru M. Stefanescu (Ohio State University and University of Alabama), Gorka Alonso (AZTERLAN), Pello Larrañaga (AZTERLAN), Esther de la Fuente (VEIGALAN), Ramón Suarez (AZTERLAN).
Cast Iron, Foliated Dendrites, Graphite Growth, Graphite Morphology.
How can we help you?
Mantente informad@ de la actividad de AZTERLAN.
Keep up with AZTERLAN’s activity.
Keep up with AZTERLAN’s activity.
We train workforce in different fields regarding the production of metallic alloys, components and structures.
We will contact you as soon as possible.
Share your challenge with us.