6th IEEE International Conference on Industrial Informatics
07/2008
10.1109/INDIN.2008.4618372
Argoitz Zabala, Fundición de hierro, I+D+i, Tecnologías de fundición
Microshrinkages are known as probably the most difficult defects to avoid in high-precision foundry due to the large number of factors involved in their apparition. The presence of this failure renders the casting invalid, with the subsequent cost increment. Bayesian networks allow to model the foundry process as a probabilistic constellation of interrelated variables. In this way, after a suitable learning process, the Bayesian network is able to infer causal relationships; in other words, it may guess the value of a variable (for instance, the presence or not of a defect). Against this background, we present here the first microshrinkage prediction system that, upon the basis of a Bayesian network, is able to foresee the apparition of this defect in order to avoid it. Further, we have tested this system in two real foundries and present here the obtained results.
Yoseba K. Penya (University of Deusto), Pablo García Bringas (University of Deusto), Argoitz Zabala (AZTERLAN)
rechupe, micro-rechupe, cero defectos, monitorización de proceso, predicción de resultados, fundición, hierro.
¿Cómo podemos ayudarte?
Mantente informad@ de la actividad de AZTERLAN.
Mantente informad@ de la actividad de AZTERLAN.
Formamos equipos de trabajo en distintos ámbitos de la metalurgia y los procesos de transformación de metales.
Indícanos los datos de tu trabajo y nos pondremos en contacto contigo lo antes posible.
Comparte tu reto con nuestro equipo. Hablar no puede más que acercarnos un poco más a posibles soluciones.